

Features

- Thermal Protection, High Reliability
- Small Size
- Remote Signal Contact for Failure Indication
- High Energy Capacity
- Sealing Material, Flame-retardant to V0 (UL 94)
- Comply with UL 1449 / IEC 61643-11

Applications

- Telecom Equipment
- String Inverter in Photovoltaic System
- AC / DC Power Supply
- Uninterruptable Power Supply (UPS)
- Surge Protective Device (SPD)
- Electric Meter
- Power Distribution Unit (PDU)

Thermally Protected Varistors (TFMOV) Feature \& Model List Overview

Description

TFMOV is a combination of varistors (MOV) and thermal protection component. Since varistor has the characteristics of aging or degrading; TFMOV can separate the varistor from the main circuitry by opening the thermal protection component when the varistor (MOV) degrades or fails. It is often used in which requires high reliability and weather withstanding, such as photovoltaic inverters, communication equipment, and power supplies in data centers, etc.

Schematics

MOV Operation Principle

Transient Overvoltage

Clamping Voltage

Thermal Protection MOV

Figure a is a surge protection circuit commonly used in power supplies. MOV is used to suppress the surge voltage and protect the subsequent circuit. There is a risk of burning when the varistor degrades or fails. In the high-reliability surge protection circuit of Figure b, in order to improve the safety of the circuit, a thermal protection varistor TFMOV is used as the surge voltage protection element. TFMOV is a combination of varistors (MOV) and thermal protection component. When the temperature of the MOV is abnormally exceeded, the thermal fuse will be opened first, so that the failure mode of the MOV appears to be open-circuit failure.

Figure a Typical surge protection circuit

Figure b: High reliability surge protection circuit

Benefits

TFMOV Failure Simulation

During the electrical performance degrading of varistor, the inbuilt ATCO will open the circuit when the leakage current of varistor increases to tens of micro leakage current of varistor increases to tens of micro
Amperes. As shown in the figure above, this is a safe open circuit failure.

MOV Failure Simulation

The electrical performance of varistor degrades with operating, mostly the varistor voltage drops, and leakage current increases. The heat accumulation can cause the temperature increase sharply and varistor results in thermal breakdown to short circuit status. It's very dangerous.

Part Numbering System

Note:
Pin number and other options are used only as identification codes for internal unique specifications and are not part of the product model

Nominal Discharge Current

3 TFMOV20M Series
4 TFMOV25M Series

Application Options

Design

When a single TFMOV surge capacity can`t meet the requirement of customers, paralleling more TFMOVs is recommended.
Due to its nonlinear current-voltage characteristics, please pay attention to below tips:

1. Use the TFMOV from the same manufacturer with same model to parallel.
2. Control the varistor voltage; Typically, the varistor voltage deviation should be less than 1% in the same group (between the Max and Min), and meet the next tip at the same time.
3. Calculate the average surge capacity for each TFMOV and keep a margin at least 10%.
4. Design the layout like Figure.2. to make sure the surge capacity is divided averagely.

The Design not Recommended

Figure 1

Figure . 2

Agency Information

Agency Information		Standards	NO．	Category
	UL	UL 1449 4th Edition	E322662	VZCA2
c 5	CUL	CSA C22．2 NO．269，CSA ECN 516	E322662	VZCA8
	TUV	IEC／EN 61643－11，IEC／EN 61643－31	See the differe	
cac	CQC	GB 4943．1－2011，GB 8898－2011； GB／T 10193－1997，GB／T 10194－1997	See the differe	
	CE	IEC／EN 61643－11，IEC／EN 61643－31	See the differe	

Patents

Name	Region	Category	Patent NO．
Varistor with In－built Alloy－Type Thermal Fuse	China	Patent for Invention	ZL 200510044661．5
A Protection Pluggable Module with Over Current，Over Voltage， and Over Temperature Protection Function	China	Utility Model	ZL 201020244488．X
A Varistor with Double Protection Function	China	Utility Model	ZL 201020255481．8
Surge Protection Module Applicable for Power Strip	China	Utility Model	ZL 201120107173．5
A Surge Protection Module Applicable for Power Strip	China	Patent for Invention	ZL 201110092261．7
A New Type of Varistor and Surge Protective Device with Thermal Protection	China	Utility Mode	ZL 201420306127．1
A Surge Protective Device	China	Utility Modeel	ZL 201420415059．2
A Varistor and Thermal Protection Component Combination	China	Utility Mode	ZL 201520376567．9
合金型温度ヒューズ付のバリスタ	Japan	Utility Mode	3142835
Varistor with an Alloy－Type Temperature Fuse	Australia	Utility Mode	2007100456
Varistor with an Alloy－Type Temperature Fuse	Taiwan	Utility Model	M 300855
Varistor with an Alloy－type Temperature Fuse	Canada	Patent for Invention	2588819
Metal Oxide Varistor with Built－in Alloy－Type Temperature Fuse	USA	Patent for Invention	US 8780521
Varistor with In－built Alloy Type Thermal Fuse（with Housing）	USA	Patent for Invention	US 9355763

Glossary

Item	Description
V_{N}	Nominal Varistor Voltage Voltage, at specified d.c. current used as a reference point in the component characteristic.
8/20 $\mu \mathrm{s}$	8/20 Current Impulse Current impulse with a nominal virtual front time of $8 \mu \mathrm{~s}$ and a nominal time to half-value of $20 \mu \mathrm{~s}$. - (IEC 61643-11)
1.2/50 $\mu \mathrm{s}$	1.2/50 Voltage Impulse Voltage impulse with a nominal virtual front time of $1.2 \mu \mathrm{~s}$ and a nominal time to half-value of $50 \mu \mathrm{~s}$. - (IEC 61643-11)
$U_{\text {c }}$	Maximum Continuous Operating Voltage Maximum r.m.s. voltage, which may be continuously applied to the SPD's mode of protection. - (IEC 61643-11)
$I_{\text {n }}$	Nominal Discharge Current Crest value of the current through the SPD having a current waveshape of 8/20.
$\boldsymbol{l}_{\text {imp }}$	Impulse Discharge Current for Class I Test Crest value of a discharge current through the SPD with specified charge transfer Q and specified energy W/R in the specified time. - (IEC 61643-11)
$I_{\text {max }}$	Maximum Discharge Current Crest value of a current through the SPD having an $8 / 20$ waveshape and magnitude according to the manufacturers specification. $I_{\text {max }}$ is equal to or greater than I_{n}. - (IEC 61643-11)
V_{c}	Clamping Voltage Peak voltage developed across the varistor terminations under standard atmospheric conditions, when passing an $8 / 20 \mu$ s class current pulse.
C_{V}	Capacitance Capacitance across the MOV measured at a specified frequency and voltage.
Modes of protection	Mode of protection of an SPD An intended current path, between terminals that contains protective components, e.g. line-to-line, line-to-earth, line-to-neutral, neutral-to-earth. - (IEC 61643-11)
U_{p}	Voltage Protection Level Maximum voltage to be expected at the SPD terminals due to an impulse stress with defined voltage steepness and an impulse stress with a discharge current with given amplitude and waveshape. - (IEC 61643-11)
IP	Degree of protection of enclosure Classification preceded by the symbol IP indicating the extent of protection provided by an enclosure against access to hazardous parts, against ingress of solid foreign objects and possibly harmful ingress of water

ATTENTION

Usage

1. The voltage applied continuously to the TFMOV can not exceed its maximum continuous operating voltage U_{c}.
2. When atmosphere press is from 45 kPa to 106 kPa , the related altitude shall be from 5000 meters to -500 meters.
3. Do not touch the product body or pins directly when power is on, to avoid electric shock.
4. Do not clean the TFMOV with strong polar solvent such as ketone, esters, benzene, halogenated hydrocarbon, to avoid damaging the enclosure.
5. It should have a reliable grounding when using these products.

Replacement

TFMOV is a non-repairable product. For safety sake, please use equivalent TFMOV for replacement.

Storage

Do not store TFMOV at high temperature, high humidity or corrosive gas environment. To avoid reducing the solderability of the pins, please use them up within 1 year after receiving the goods.

Installation Position

Do not install the TFMOV on a place that may often suffer severe continuous vibration.

Mechanical Stress

Do not take violent action such as knocking when assembling to avoid mechanical damage.

Wave Soldering Parameters (Reference)

Recommended Hand-Soldering Parameters

Item	Condition
Iron Temperature	$350^{\circ} \mathrm{C}$ (Max.)
Soldering Time	4 seconds (Max.)
Distance between Soldering Point and the Bottom of Product	2 mm (Min.)

Note: Unit: mm
TFMOV10M625, TFMOV10M680: Thickness T is $16.0 \pm 1.0 \mathrm{~mm}$

L	L_{1}	W	$\mathrm{~W}_{1}$	$\mathrm{~W}_{2}$	T	$\mathrm{~T}_{1}$
26.5 ± 1.0	3.5 ± 0.5	34.0 ± 1.0	5.0 ± 0.5	1.0 ± 0.3	14.0 ± 1.0	0.4 ± 0.2
$\mathrm{~T}_{2}$	$\mathrm{~F}_{1}$	$\mathrm{~F}_{2}$	$\mathrm{~F}_{3}$	$\mathrm{~F}_{4}$	$\mathrm{~F}_{5}$	$\mathrm{~F}_{6}$
0.5 ± 0.2	7.0 ± 0.5	3.3 ± 0.5	2.0 ± 0.5	30.0 ± 0.5	13.0 ± 0.5	4.0 ± 0.5

Agency Approvals

Schematics

Agency	Standards	No.
$\mathrm{c} \boldsymbol{i}_{\mathrm{us}}^{®}$	UL1449	E322662
$\underset{\text { rivenemenion }}{\Delta}$	$\begin{aligned} & \text { EN 61643-11 } \\ & \text { EN } 50539-11 \end{aligned}$	$\begin{aligned} & \text { J } 50437564 \\ & \text { R } 50438698 \end{aligned}$
$C E$	$\begin{aligned} & \text { EN 61643-11 } \\ & \text { EN 61643-31 } \end{aligned}$	$\begin{aligned} & \text { AN50473984 } \\ & \text { AN50473676 } \end{aligned}$
Environment	RoHS 2.0 \& REACH	Compliant

P2

Specifications

Model	Nominal System Voltage	Nominal Varistor Voltage @1mA	Max. Continuous Operating Voltage		Nominal Discharge Current ($8 / 20 \mu \mathrm{~s}$)	Max. Discharge Current(8/20 $\mu \mathrm{s})$	Voltage Protection Level	SCCR	UL1449			$\begin{gathered} \text { IEC/ } \\ \text { EN } \\ 61643- \\ 11 \end{gathered}$	$\begin{gathered} \text { IEC/ } \\ \text { EN } \\ 61643 \\ -31 \end{gathered}$
	U_{n}	V_{N}	MCOV		$I_{\text {n }}$	$I_{\text {max }}$	U_{p}						
	(VAC)	(V)	$\begin{gathered} U_{c} \\ \text { (VAC) } \end{gathered}$	$\begin{gathered} U_{\text {cpv }} \\ (\mathrm{VDC}) \end{gathered}$	(kA)	(kA)	(V)	(kA)	AC Type 1CA	AC Type 4CA	$\begin{aligned} & \text { DC } \\ & \text { Type } \\ & \text { 4CA } \end{aligned}$	Class II	Class II
TFMOV10M50	24	82	50	-	10	25	360	-		\bullet		\bullet	
TFMOV10M60	48	100	60	-	10	25	400	-		-		-	
TFMOV10M75	60	120	75	-	10	25	400	-		-		-	
TFMOV10M95	60	150	95	-	10	25	450	-		\bullet		\bullet	
TFMOV10M115	108	180	115	-	10	25	500	-		-		-	
TFMOV10M130	120	200	130	-	10	25	550	-		-		-	
TFMOV10M140	120	220	140	-	10	25	600	-		-		-	
TFMOV10M150	120	240	150	-	10	25	600	-		\bullet		-	
TFMOV10M175	120	270	175	-	10	25	700	200	\bullet	\bullet		-	
TFMOV10M190	120	300	190	-	10	25	750	-		-		-	
TFMOV10M210	120	330	210	-	10	25	800	-		-		-	
TFMOV10M230	120	360	230	-	10	25	900	-		\bullet		\bullet	
TFMOV10M250	220	390	250	-	10	25	1000	-		\bullet		\bullet	
TFMOV10M275	230	430	275	-	10	25	1100	-		\bullet		\bullet	
TFMOV10M300	230	470	300	-	10	25	1200	200	-	-		\bullet	
TFMOV10M320	277	510	320	-	10	25	1300	-		-		\bullet	
TFMOV10M350	277	560	350	-	10	25	1500	200	-	-		\bullet	
TFMOV10M385	277	620	385	500	10	25	1500	-		\bullet	-	\bullet	\bullet
TFMOV10M420	347	680	420	560	10	25	1800	150	\bullet	-	\bullet	\bullet	\bullet
TFMOV10M460	347	750	460	600	10	25	1800	-		-	\bullet	\bullet	\bullet
TFMOV10M510	347	820	510	670	10	25	1800	-		-	\bullet	\bullet	\bullet
TFMOV10M550	480	910	550	720	10	25	2500	150	-	\bullet	\bullet	-	\bullet
TFMOV10M625	480	1000	625	800	10	25	2500	-		\bullet	\bullet	\bullet	-
TFMOV10M680	480	1100	680	880	10	25	2500	-		\bullet	\bullet	\bullet	\bullet

Note:

The Value of Voltage Protection Level $\left(U_{p}\right)$ is determined according to IEC 61643-11:2011 clause 6.4.
Preferred values of voltage protection level (kV): $0.08,0.09,0.10,0.12,0.15,0.22,0.33,0.4,0.5,0.6,0.7,0.8,0.9,1.0,1.2,1.5,1.8,2.0,2.5$, 3.0, 4.0, 5.0, 6.0, 8.0, 10.

Performance Curve for Reference

Limited Current Test Curve (UL 1449 4th clause 44.4)

Note:
The limited current test curve is for reference only.

Max. Peak Current Derating Curve

Note:
$1,2,10,10^{2}, 10^{3}, 10^{4}, 10^{5}, 10^{6}$ Stand for number of repetitions.

Voltage-Current Characteristic Curves

Packaging Information

Unit: mm
Please contact us if you have special packaging requirements.

Item	Tube	Carton
Dimensions (mm)	$40 \times 34 \times 314$	$400 \times 400 \times 250$
Quantity (PCS)	20	700

