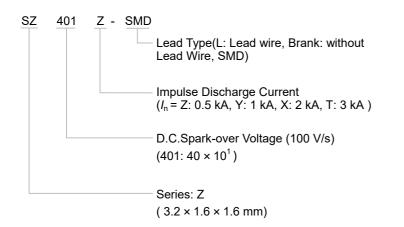


Features

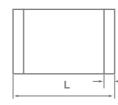

GDT

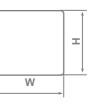
- Fast Response
- Stable Performance Over Surface Life
- High Current Rating
- Low Capacitance
- High Insulation Resistance
- RoHS & REACH Compliant

Applications

- WLAN XDSL
- CATV
- MDF
- Ethernet
- BTS(Base Station)
- Power Supply
- Antenna and RF
- Consumer Electronics
- N-PE Protection in AC Power

Part Number System

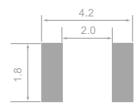

Description


The Gas Discharge Tube (GDT) is a protective device which is filled with certain proportion of noble gas, or mixed gas or other discharge media in the space between metal electrodes and metalized ceramics, and then sealed at high temperature to form a singlegap or multi-gap switch type protective device. When the protected circuit or equipment suffers to surge,GDT will change from high impedance state to low impedance state and release the surge energy to reduce the residual voltage of the circuit, and then protect the equipment or humanbody from the hazard of transient overvoltage.

Agency Approvals

Agency	Standards	File No.
RL ®	UL497B	E513446
TÜVRheinland	TUV	On-going

Dimensions (mm)



Ĺ	W	Н	L ₁
3.2 ± 0.3	1.6 ± 0.2	1.6 ± 0.2	0.4

L1

Recommendation Pad Size (mm)

GDT

SET safe | SET fuse

GDT

Glossary

ltem	Description
Vs	D.C.Spark-over Voltage The voltage at which the GDT sparks over with slowly increasing d.c. voltage. — (IEC 61643-311)
v	Impulse Spark-over Voltage The highest Voltage which appears across the terminals of a GDT in the period between the application of an impulse of given wave-shape and the time when current begins to flow. — (ITU-T K.12)
V _a	Arc Voltage Voltage drop across the GDT during arc current flow. — (IEC 61643-311)
V _{gl}	Glow Voltage The peak value of the voltage drop across the GDT when a glow-current is flowing, It is sometimes called the glow mode voltage. — (ITU-T K.12)
8/20 µs	8/20 Current Impulse Current impulse with a nominal virtual front time of 8 μs and a nominal time to half-value of 20 μs. — (IEC 61643-11)
1.2/50 µs	1.2/50 Voltage Impulse Voltage impulse with a nominal virtual front time of 1.2 μs and a nominal time to half-value of 50 μs. — (IEC 61643-11)
I	Alternating Discharge Current The r.m.s. value of an approximately sinusoidal alternating current passing through the GDT. — (ITU-T K.12)
I _n	Nominal Discharge Current Crest value of the current through the GDT having a current waveshape of 8/20 μs. — (IEC 61643-11)
I _{max}	Maximum Discharge Current Crest value of a current through the GDT having an 8/20 μ s waveshape and magnitude according to the manufacturers specification. I_{max} is equal to or greater than I_n . — (IEC 61643-11)

Specifications

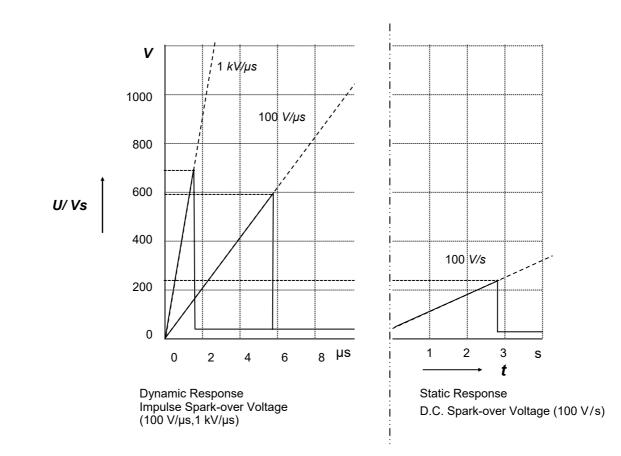
Model	D.C. Spark-over Voltage @100 V/s	Tolerance of V _s	lmpulse Spark-over Voltage @1 kV/μs	Arc Voltage @1 A	Impulse Discharge Current @8/20 µs	Alternating Discharge Current @50Hz 1 s	Insula Resista		Capacitance 0.5 VDC @ 1MHz	Agency A	pprovals
	Vs	Vs	V	Va	I _n	1	V _{DC}	IR	С	FI [®]	TÜVRheinland
	V	V	V	V	kA	A (r.m.s.)	V	GΩ	(pF)	UL497B	TUV
SZ091Z - SMD	90	63 ~ 118	≤ 900	≈ 8	0.5	0.5	50	≥1	≤ 0.5	•	0
SZ151Z - SMD	150	105 ~ 195	≤ 900	≈ 8	0.5	0.5	50	≥1	≤ 0.5	•	0
SZ201Z - SMD	200	120 ~ 280	≤ 900	≈ 10	0.5	0.5	100	≥1	≤ 0.5	•	0
SZ231Z - SMD	230	153 ~ 300	≤ 1000	≈ 10	0.5	0.5	100	≥1	≤ 0.5	•	0
SZ301Z - SMD	300	210 ~ 390	≤ 1100	≈ 10	0.5	0.5	100	≥1	≤ 0.5	•	0
SZ351Z - SMD	350	245~ 455	≤ 1200	≈ 10	0.5	0.5	100	≥1	≤ 0.5	•	0
SZ401Z - SMD	400	280 ~ 520	≤ 1200	≈ 12	0.5	0.5	100	≥ 1	≤ 0.5	•	0
SZ471Z - SMD	470	330 ~ 610	≤ 1400	≈ 12	0.5	0.5	100	≥1	≤ 0.5	•	0

Note:

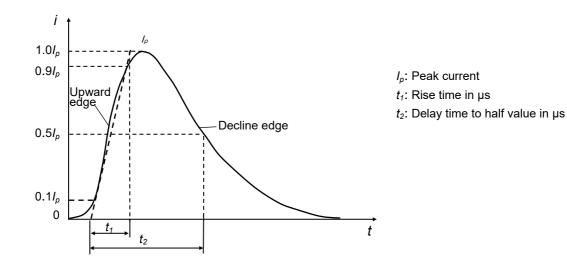
GDT

1. The above parameters based on ITU - T K12 & IEC61643.311 standards.

2. "•" means GDT has gained the certification.

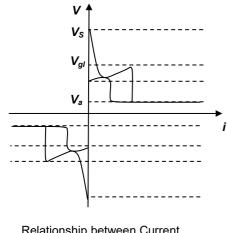

" \circ " means GDT is planed to apply for certification.

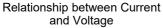
GDT

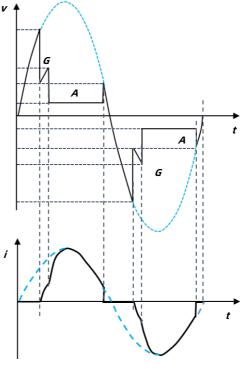


SET safe SET fuse

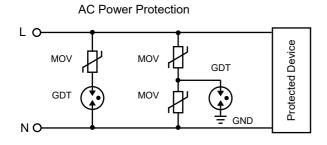
Reference Curve for Spark-over Voltage (Refer to 230 VDC)



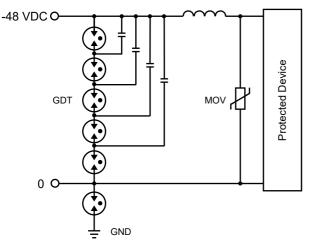

Reference Curve for Impulse Discharge Current


SET safe SET fuse

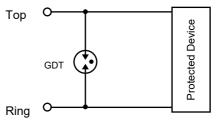
Electrical Characteristics

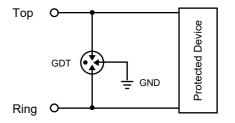


- Vs : Spark-over Voltage
- Vgl: Glow Voltage
- Va : Arc Voltage
- G : Glow Mode
- A : Arc Mode

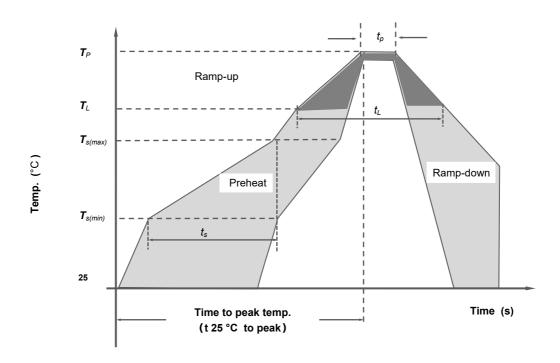


Time Variation Patterns of Voltage and Current


Application Example


DC Power Protection

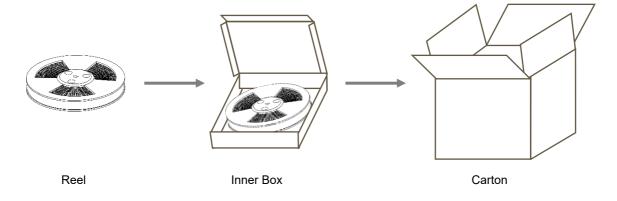
3-Electrod GDT Signal Circuit Protection



GDT

GDT

Reflow Soldering Parameters (For Reference Only)



	Reflow Condition	Pb-Free Assembly		
	Temp. Min <i>T_{s(min)}</i>	150 °C		
Preheat	Temp. Max <i>T_{s(max)}</i>	200 °C		
	Time (Min to Max) <i>t</i> s	(60 to 180) s		
Average ramp	up rate (Liquidus Temp. (T_L) to peak)	3 °C / second max		
$T_{s(max)}$ to T_L Ra	mp-up Rate	5 °C / second max		
	Temp. (T_L) (Liquidus)	217 °C		
Reflow	Temp. (<i>t</i> _{<i>L</i>})	(60 to 150) s		
Peak Temp. (<i>T_P</i>)		(255 to 260) °C		
Time within 5 °C of actual peak Temp. (t_P)		(10 to 30) s		
Ramp-down Rate		6 °C / second max		
Time 25 °C to peak Temp. (T_P)		8 minutes max		
Do not exceed		260 °C		

Packaging Information

ltem	Reel	Inner Box	Carton			
Dimensions (mm)	Φ178 × 12.8	200 × 200 × 20	220 × 220 × 180			
Quantity (PCS)	3000	3000	24000			
Notes: Packaging dimensions and quantity are for reference only.						

Please refer to the specifications for the packaging details.

GDT

SET safe | SET fuse

ATTENTION

Usage

- 1. Do not operate GDT in power supply networks, whose maximum operation voltage exceeds the minimum spark-overvoltage of the GDT.
- 2. The GDT may become hot in the event of longer periods of current stress (burn risk). In the event of overload the connectors may fail or the component may be destroyed.
- 3. If the contacts of GDT are defective, current load can cause sparks and loud noises.
- 4. When air pressure is from 55 kPa to 106 kPa. The relative altitude shall be +5000 m to -500 m.

Replacement

The GDT is a non-repairable product. For safety sake, please use equivalent GDT for replacement.

Storage

The packaged GDT should be placed in a dry, ventilation and non-corrosive environment.

Installation Position

Do not install the GDT in a touchable position.

Mechanical Stress

Do not take violent action such as knocking when assembling, to avoid product failure.