

Description

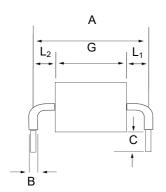
The SPCL 20 series of high power TVS diode is specially designed for meeting severe surge test environment of both AC and DC line protection applications. The SPCL 20 features a very fast response and ultra low clamping characteristics as compared to MOVs (Metal Oxide Varistors). These SPCL components can be connected in series and / or parallel to create a very high surge current protection solution.

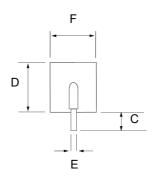
Applications

- Communication Equipment
- Security & Protection
- Industrial Control Equipment
- **Power Supply**
- **Automotive Electronics**
- **New Energy**
- Lightning Protection

Features

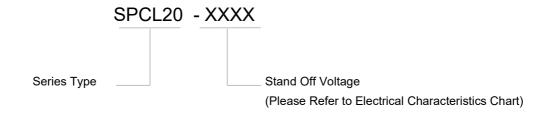
- Very low clamping voltage
- Sharp breakdown voltage
- Low slope resistance
- Bi-directional
- Snapback technology for superior clamping factor
- Symmetric in leads width for easier soldering during Assembly.
- IEC-61000-4-2 ESD 30 kV (Air), 30 kV (Contact)
- ESD protection of data lines in accordance with IEC 61000-4-2
- EFT protection of data lines in accordance with IEC 61000-4-4
- Halogen-free
- RoHS compliant
- Glass passivated junction
- Pb-free E4 means 2nd level interconnect is Pb-free and the terminal finish material is Silver


Functional Diagram

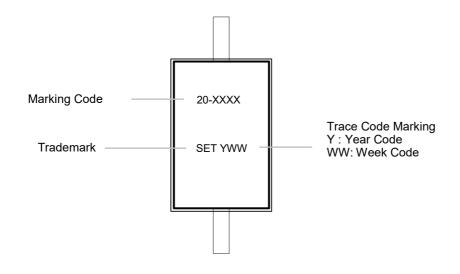


TVS Diodes
Transient Voltage Suppression Diodes

Package Outline Dimensions



Symbol	Millimeters	Inches		
А	24.15 ± 0.80	0.95 ± 0.03		
В	2.50 ± 0.70	0.100 ± 0.028		
С	6.0 ± 1.0	0.236 ± 0.04		
D	15.5 ± 1.4	0.611 ± 0.055		
E	1.28 ± 0.05	0.051 ± 0.002		
F	14.9 ± 1.4	0.587 ± 0.055		
G - 016C	4.0 Max.	0.157 Max.		
G - 058C / 066C / 076C	7.8 Max.	0.307 Max.		
L ₁ / L ₂	L ₁ = L ₂ Tolerance ± 1.0 mm (0 .04 inch)			


Transient Voltage Suppression Diodes

Part Numbering System

Marking

Top View

Transient Voltage Suppression Diodes

SPCL20 Series (20 kA)

Glossary

Item	Description
v _c	Clamping Voltage Voltage across TVS in a region of low differential resistance that serves to limit the voltage across the device terminals.
V _R	Reverse Stand-off Voltage Maximum voltage that can be applied to the TVS without operation. NOTE: It is also shown as V_{WM} (maximum working voltage (maximum d.c. voltage)) and known as rated stand-off voltage (V_{so}).
I _R	Reverse Leakage Current Current measured at V_{R} .
V _{BR}	Breakdown Voltage Voltage across TVS at a specified current I_T in the breakdown region.
I PPM	Rated Random Recurring Peak Impulse Current Maximum-rated value of random recurring peak impulse current that may be applied to a device.
P _{M(AV)}	Rated Average Power Dissipation Maximum-rated value of power dissipation resulting from all sources, including transients and standby current, averaged over a short period of time.
P _{PPM}	Rated Random Recurring Peak Impulse Power Dissipation Maximum-rated value of the product of rated random recurring peak impulse current (I_{PPM}) multiplies by specified maximum clamping voltage (V_C).
CJ	Capacitance Capacitance across the TVS measured at a specified frequency and voltage.
V _{FS}	Peak Forward Surge Voltage Peak voltage across an TVS for a specified forward surge current (I_{FS}) and time duration. NOTE: Also shown as V_{F} .
I _{FS}	Forward Surge Current Pulsed current through TVS in the forward conducting region. NOTE: Also shown as I _F .
α _{V(BR)}	Temperature Coefficient of Breakdown Voltage The change of breakdown voltage divided by the change of temperature.
I PP	Peak pulse Current Peak pulse current value applied across the TVS to determine the clamping voltage $V_{\mathbb{C}}$ for a specified wave shape.
lτ	Pulsed D.C. Test Current Test current for measurement of the breakdown voltage V_{BR} . This is defined by the manufacturer and usually given in milliamperes with a pulse duration of less than 40 ms. NOTE: Also shown as I_{BR} .

--(GB-T 18802.321 / IEC 61643-321 / JESD210A)

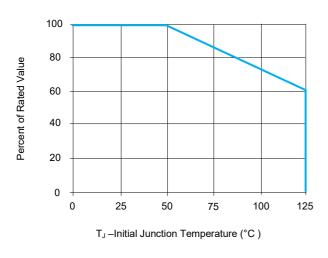
Transient Voltage Suppression Diodes

SPCL20 Series (20 kA)

Electrical Characteristics (T_A=25 °C unless otherwise noted)Table 1

Part Number	Device Marking Code	Break Volta V _{BR} (age	Test Current I _T	Stand-off Voltage	Max. Reverse Leakage	Typical I _R @85°C	Max. Clamping Voltage VCL @ l _{pp} Peak Pulse Current (l _{PP})			Max. Temp Coefficient	Max. Capacitance 0 Bias 10kHz
		Min	Max		V _R	I _R @V _R					OF V _{BR}	
		(V)	(mA)	(V)	(μΑ)	(μΑ)	I _{PP} (8/20 μs) (A)	I _{PP} (10/350 μs) (A)	V _{CL} (V)	(%/°C)	(nF)
SPCL20 - 016C	20 - 016C	17.5	19.3	10	16	5	15	20000	3200	30	0.1	50
SPCL20 - 058C	20 - 058C	64	70	10	58	5	15	20000	3200	120	0.1	15
SPCL20 - 066C	20 - 066C	72	80	10	66	5	15	20000	3200	130	0.1	12
SPCL20 - 076C	20 - 076C	85	95	10	76	5	15	20000	3200	160	0.1	12

Maximum Ratings and Characteristics


(T_A = 25 °C unless otherwise specified.)

Parameter	Symbol	Value	Unit
Operating Storage Temperature Range	T _{STG}	-55 to 150	°C
Operating Junction Temperature Range	T _J	-55 to 125	°C
Current Rating (Note 1)	I _{pp}	20	kA

Transient Voltage Suppression Diodes

Ratings and Characteristic Curves (T_A = 25 °C unless otherwise noted)

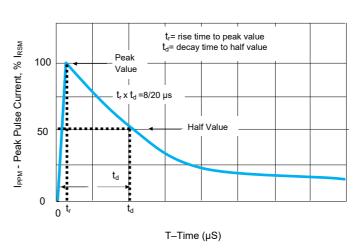
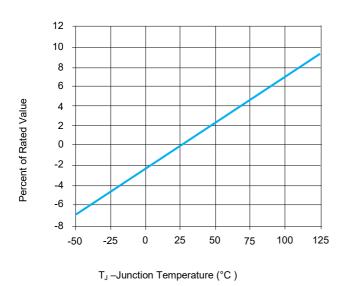
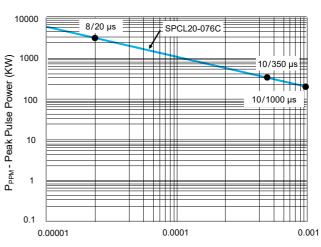



FIGURE 1 Peak Pulse Power Derating Curve

FIGURE 2 Pulse Waveform



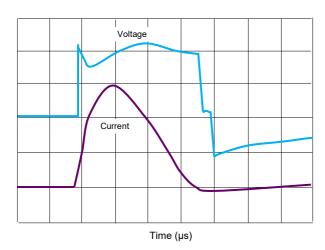

FIGURE 3 Typical VBR Vs Junction Temperature

FIGURE 4 Peak Pulse Power Rating Curve

T_d - Pulse Width (s)

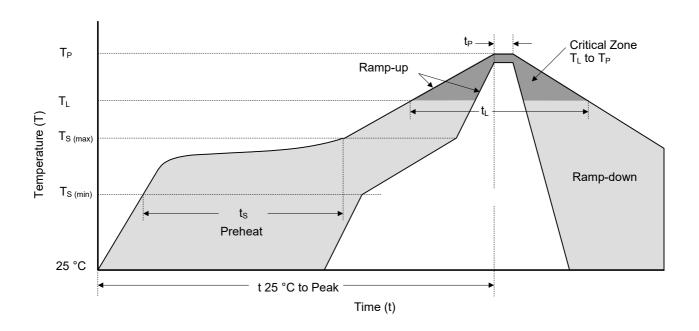
Transient Voltage Suppression Diodes

SPCL20 Series (20 kA)

Note: The power dissipation causes a change in avalanche voltage during the surge and the avalanche voltage eventually returns to the original value when the transient has passed.

FIGURE 5 Surge Response (8/20 Surge current waveform)

Flow/Wave Soldering (Solder Dipping)


Peak Temperature	260 °C +0 / -5 °C	
Dipping Time	10 seconds	
Soldering Number	1 time	

Physical Specifications

Weight	Contact manufacturer			
Case	Epoxy encapsulated			
Terminal	Silver plated leads, solderability per MIL- STD-750 Method 2026			

Soldering Parameters

Reflowing Condition

Reflow Soldering	Reflow Soldering Parameters			
	Temperature Min (T _{S (min)})	150 °C		
Pre-heat	Temperature Max (T _{S (max)})	200 °C		
	Time (min to max) (t _s)	60 ~ 120 seconds		
Average Ramp Up Rate (L	iquidus Temp (TL) to Peak	3 °C / second max.		
T _S (max) to T _L	T _S (max) to T _L Ramp-up Rate			
D (Temperature (T _L) (Liquidus)	217 °C		
Reflow	Time (min to max) (t _L)	60 ~ 150 seconds		
Peak Temp	Peak Temperature (T _P)			
Time of within 5 °C of Act	Time of within 5 °C of Actual Peak Temperature (t _P)			
Ramp-do	Ramp-down Rate			
Time from 25 °C to	Time from 25 °C to Peak Temperature			
Do Not	Do Not Exceed			

SETsafe SET fuse

SPCL20 Series (20 kA)

Transient Voltage Suppression Diodes

Packaging Information

Part Number	Package	Quantity	Packaging Option
SPCL20-XXXX	SPCL Package	56 PCS / Box	Bulk
SPCL20-XXXX-12	SPCL Package	12PCS / Box	Bulk

Transient Voltage Suppression Diodes

SPCL20 Series (20 kA)

Usage

- 1.TVS must be operated in the specified ambient temp.
- 2.Do not clean the TVS with strong polar solvent such as ketone, esters, benzene and halogenated hydrocarbon, to avoid damaging the encapsulating layer.
- 3. Please do not apply severe vibration, shock or pressure to TVS, to avoid element cracking.

Replacement

- 1.If TVS is visually damaged, please replace it.
- 2.TVS is a non-repairable product. For safety sake, please use equivalent TVS for replacement.

Storage

- 1.Storage Temp. Range: (-55 to 150) °C.
- 2.Do not store the TVS at the high temp., high humidity or corrosive gas environment, to avoid influencing the solder- ability of the lead wires. The product shall be used up within 1 year after receiving the goods.

Environmental Conditions

- 1.TVS should not be exposed to the open air, nor direct sunshine.
- 2.TVS should avoid rain, water vapor or other condition of high temp. and high humidity.
- 3.TVS should avoid sand dust, salt mist, or other harmful gases.

Max. Typical Capacitance of TVS

The typical capacitance of TVS is listed in the specifications. Designers may refer to it when designing TVS in High frequency circuit.

Installation Mechanical Stress

- 1.Do not knock TVS when installing, to avoid mechanical damage.
- 2.Please do not apply severe vibration, shock or pressure to TVS, to avoid surface resin or element cracking.