SPC3 Series

TVS Diodes

Transient Voltage Suppression Diodes

Description

The SPC3 in SMTO-218 package provide the enhanced quality, easy manufacturing than typical through-hole TVS components. They can be connected in series and/or parallel to create various capability and flexible protection solutions.

Applications

- Communication Equipment
- Security & Protection
- **Industrial Control Equipment**
- Power Supply
- Automotive Electronics
- New Energy
- Lightning Protection

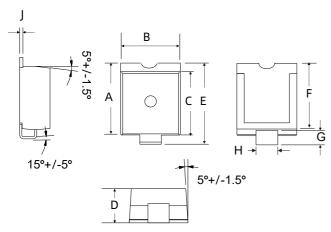
Functional Diagram

Bi-Directional

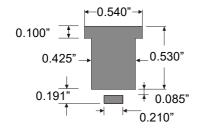
Features

- Bi-directional
- Low clamping and slope resistance
- For automatic pick and place assembly and reflow process to reduce the manufacturing cost and increase the soldering quality compared to axial leads package
- Patent pending package design
- Meet MSL level 1, per J-STD-020, LF Maximum peak of 245
- Pb-free E3 means 2nd level interconnect is Pb-free and the terminal finish material is tin (Sn)
- ESD follow IEC 61000-4-2
- Halogen free and RoHS compliant
- Tube or tape and reel pack options available

Electrical Characteristics (T_A=25 °C unless otherwise noted)


Part Number	Stand-off Voltage V _R Max. Reverse Leakage I _R @V _R	Breakdown Test Voltage Current		Max. Clamping Voltage V _{CL} @Peak Pulse Current (I _{PP})			Max. Temp Coefficient	Max. Capacitance		
			V _{BR} @I₁ Min Max		l _T	V _{CL}	I _{PP} (8/20 μS)	Ι _{ΡΡ} (10/350 μS)	of V _{BR}	0 Bias 10KHz
			Min	Max			Min	Typical		
	(V)	(μΑ)	(V)	(uA)	(V)	(A)	(A)	(%/°C)	(nF)
SPC3-066C	66	10	75	83	40	120	3000	800	0.1	6

+86 592-571-5838 www.SETsafe.com www.SETfuse.com E-mail: sales@SETfuse.com



Package Outline Dimensions (SMTO-218)

Note: Coplanarity	, of solder	side is	controlled	within ().10mm
-------------------	-------------	---------	------------	----------	--------

Mounting Pad Layout (Inch)

0	Millim	eters	Inches		
Symbol	Min.	Max.	Min.	Max.	
Α	15.78	16.63	0.621	0.655	
В	13.43	15.09	0.529	0.594	
С	13.83	14.24	0.544	0.561	
D	6.94	7.24	0.273	0.285	
E	17.82	18.72	0.702	0.737	
F	14.40	14.76	0.567	0.581	
G	1.88	2.84	0.074	0.112	
Н	4.89	5.65	0.193	0.222	
J	0.72	0.85	0.028	0.033	

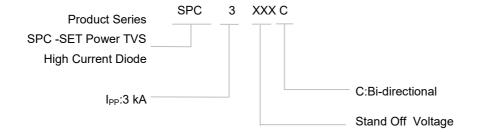
Maximum Ratings and Characteristics

(Ratings at 25 °C ambient temperature unless otherwise specified.)

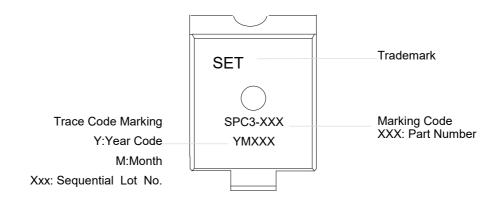
Parameter	Symbol	Value	Unit
Storage Temperature Range	T _{STG}	-55 to 150	°C
Operating Junction	TJ	-55 to 125	°C
Current Rating (8/20 μS wave)	I _{PP}	10	kA

Physical Specifications

Weight	Contact manufacturer
Case	Epoxy molding compound encapsulated
Terminal	Tin plated lead, solderability per MIL-STD-202 Method 208



SPC3 Series


Environmental Specifications

Temperature Cycling	JESD22-A104
HTRB	JESD22-A108
MSL	JESDEC-J-STD-020, Level 1
H3TRB	JESD22-A101
RSH	JESD22-B106

Part Numbering System

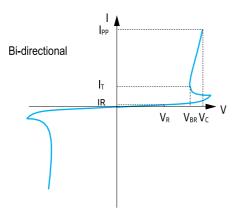
Marking



SPC3 Series

Glossary

Item	Description
V _C	Clamping Voltage Voltage across TVS in a region of low differential resistance that serves to limit the voltage across the device terminals.
V _R	Reverse Stand-off Voltage Maximum voltage that can be applied to the TVS without operation. NOTE: It is also shown as V_{WM} (maximum working voltage (maximum d.c. voltage)) and known as rated stand-off voltage (V_{so}).
I _R	Reverse Leakage Current Current measured at V_{R} .
V BR	Breakdown Voltage Voltage across TVS at a specified current I_T in the breakdown region.
I _{PPM}	Rated Random Recurring Peak Impulse Current Maximum-rated value of random recurring peak impulse current that may be applied to a device.
P _{M(AV)}	Rated Average Power Dissipation Maximum-rated value of power dissipation resulting from all sources, including transients and standby current, averaged over a short period of time.
P _{PPM}	Rated Random Recurring Peak Impulse Power Dissipation Maximum-rated value of the product of rated random recurring peak impulse current (I_{PPM}) multiplies by specified maximum clamping voltage (V_{C}).
C J	Capacitance Capacitance across the TVS measured at a specified frequency and voltage.
V _{FS}	Peak Forward Surge Voltage Peak voltage across an TVS for a specified forward surge current (I_{FS}) and time duration. NOTE: Also shown as V_{F} .
I _{FS}	Forward Surge Current Pulsed current through TVS in the forward conducting region. NOTE : Also shown as $I_{\rm F.}$
$a_{V(BR)}$	Temperature Coefficient of Breakdown Voltage The change of breakdown voltage divided by the change of temperature.
I _{PP}	Peak pulse Current Peak pulse current value applied across the TVS to determine the clamping voltage V_C for a specified wave shape.
Ι τ	Pulsed D.C. Test Current Test current for measurement of the breakdown voltage $V_{\rm BR}$. This is defined by the manufacturer and usually given in milliamperes with a pulse duration of less than 40 ms. NOTE: Also shown as $I_{\rm BR}$.


-(GB-T 18802.321 / IEC 61643-321 / JESD210A)

Transient Voltage Suppression Diodes

I-V Curve Characteristics

P_{PPM} - Peak Pulse Power Dissipation

V_R - Stand-off Voltage

V_{BR} - Breakdown Voltage

V_C - Clamping Voltage

I_R - Reverse Leakage Current

Performance Curve for Reference(T_A=25 °C unless otherwise noted)

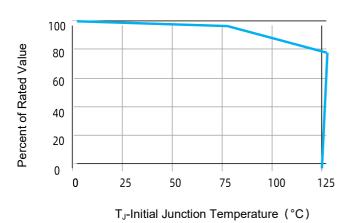


FIGURE 1 Peak Power Derating

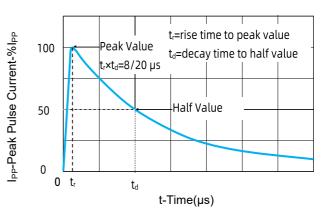
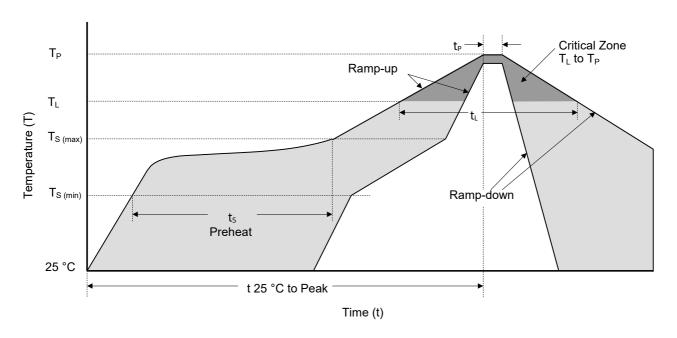
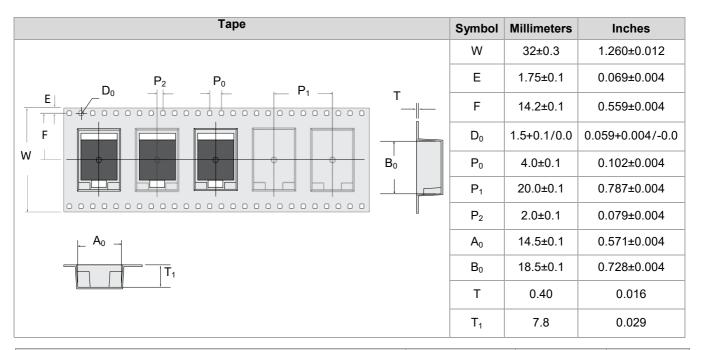



FIGURE 2 Pulse Waveform

Soldering Parameters

Reflowing Condition

Reflow Solderi	Lead-Free Assembly	
	Temperature Min (T _{S (min)})	150 °C
Pre-heat	Temperature Max (T _{S (max)})	200 °C
	Time (min to max) (t _s)	60 ~ 120 seconds
Average Ramp Up Rate (L	iquidus Temp (TL) to Peak	3 °C / second max.
T _S (max) to T _L	Ramp-up Rate	3 °C / second max.
D. 6	Temperature (T _L) (Liquidus)	217 °C
Reflow	Time (min to max) (t∟)	60 ~ 150 seconds
Peak Temp	erature (T _P)	260 ^{+0/-5} °C
Time of within 5 °C of Act	Time of within 5 °C of Actual Peak Temperature (t _P)	
Ramp-do	own Rate	6 °C / second max.
Time from 25 °C to Peak Temperature		8 Minutes max.
Do Not Exceed		260 °C


Wave Soldering (Solder Dipping)

Peak Temperature	260 °C+0 /- 5 °C
Dipping Time	10 seconds
Soldering Number	1 time

Packaging Information

	Symbol	Millimeters	Inches
D1	D	Ф13.0	Ф330.0
D W1	D_1	Ф0.520±0.008	Ф13.2±0.2
Direction of Feed	W ₁	1.417±0.079	36.0±2.0

Part Number	Weight	Packaging Option	QTY's
SPC3-XXXXC	4.33 g	Tape & Reel – 32 mm/13" tape	400 PCS

TVS Diodes

Transient Voltage Suppression Diodes

SPC3 Series

Usage

- 1.TVS must be operated in the specified ambient temp.
- 2.Do not clean the TVS with strong polar solvent such as ketone, esters, benzene and halogenated hydrocarbon, to avoid damaging the encapsulating layer.
- 3.Please do not apply severe vibration, shock or pressure to TVS, to avoid element cracking.

Replacement

- 1.If TVS is visually damaged, please replace it.
- 2.TVS is a non-repairable product. For safety sake, please use equivalent TVS for replacement.

Storage

- 1.Storage Temp. Range: (-55 to 150) °C.
- 2.Do not store the TVS at the high temp., high humidity or corrosive gas environment, to avoid influencing the solder- ability of the lead wires. The product shall be used up within 1 year after receiving the goods.

Environmental Conditions

- 1.TVS should not be exposed to the open air, nor direct sunshine.
- 2.TVS should avoid rain, water vapor or other condition of high temp. and high humidity.
- 3.TVS should avoid sand dust, salt mist, or other harmful gases.

Max. Typical Capacitance of TVS

The typical capacitance of TVS is listed in the specifications. Designers may refer to it when designing TVS in High frequency circuit.

Installation Mechanical Stress

- 1.Do not knock TVS when installing, to avoid mechanical damage.
- 2.Please do not apply severe vibration, shock or pressure to TVS, to avoid surface resin or element cracking.