

Gas Discharge Tube

SPJ Series

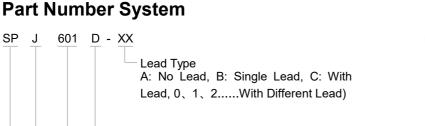
Features

- Fast Response
- Stable Performance Over Surface Life
- **High Current Rating**
- Low Capacitance
- High Insulation Resistance
- **RoHS & REACH Compliant**

Applications

SP

- Class I and Class II SPD
- N-PE Mode Protection In AC Power


Description

The Gas Discharge Tube (GDT) is a protective device which is filled with certain proportion of noble gas, or mixed gas or other discharge media in the space between metal electrodes and metalized ceramics, and then sealed at high temperature to form a singlegap or multi-gap switch type protective device. When the protected circuit or equipment suffers to surge, GDT will change from high impedance state to low impedance state and release the surge energy to reduce the residual voltage of the circuit, and then protect the equipment or humanbody from the hazard of transient overvoltage.

Agency Approvals

Agency	Standards	File No.
F1 ®	UL1449	E322662
TÜVRheinland	TUV	On-going

Dimensions (mm)

Nominal Discharge Current $(I_n = H: 20 \text{ kA}, D: 40 \text{ kA}, E: 50 \text{ kA}, F: 60 \text{ kA})$

D.C. Spark-over Voltage (100 V/s) $(601: 60 \times 10^{1})$

Product Structure: Φ 16 × 4.5 mm

Series: SP

D	D1	Н	h
Φ 16 ± 0.3	Ф 9.2	4.5 ± 0.6	0.2

Notes: Leads forming can be customized.

Glossary

Item	Description
V _s	D.C.Spark-over Voltage The voltage at which the GDT sparks over with slowly increasing d.c. voltage. — (IEC 61643-311)
v	Impulse Spark-over Voltage The highest Voltage which appears across the terminals of a GDT in the period between the application of an impulse of given wave-shape and the time when current begins to flow. — (ITU-T K.12)
V a	Arc Voltage Voltage drop across the GDT during arc current flow. — (IEC 61643-311)
V_{gl}	Glow Voltage The peak value of the voltage drop across the GDT when a glow-current is flowing, It is sometimes called the glow mode voltage. — (ITU-T K.12)
8/20 μs	8/20 Current Impulse Current impulse with a nominal virtual front time of 8 μs and a nominal time to half-value of 20 μs. — (IEC 61643-11)
10/350 µs	10/350 Current Impulse Current impulse with a nominal virtual front time of 10 μs and a nominal time to half-value of 350 μs. — (IEC 61643-11)
1.2/50 µs	1.2/50 Voltage Impulse Voltage impulse with a nominal virtual front time of 1.2 μs and a nominal time to half-value of 50 μs. — (IEC 61643-11)
I	Alternating Discharge Current The r.m.s. value of an approximately sinusoidal alternating current passing through the gas discharge tube. — (ITU-T K.12)
I n	Nominal Discharge Current Crest value of the current through the GDT having a current waveshape of 8/20 µs. — (IEC 61643-11)
I max	Maximum Discharge Current Crest value of a current through the GDT having an 8/20 μ s waveshape and magnitude according to the manufacturers specification. I_{max} is equal to or greater than I_n . — (IEC 61643-11)

GDTGas Discharge Tube

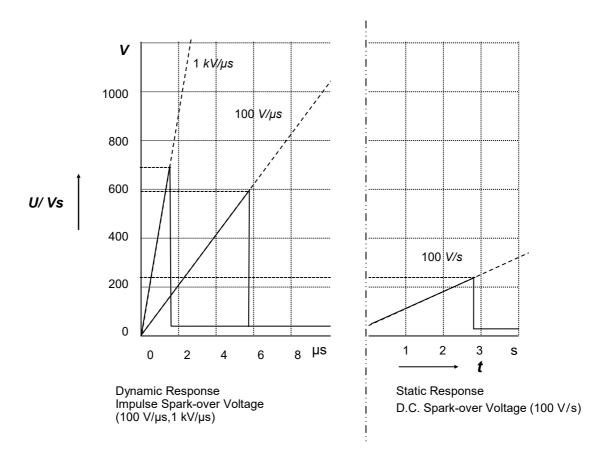
SPJ Series

	Impulse Discharge Current Creat value of a discharge current through the SDD with apositied abords transfer Q and apositied aports W/D in
I imp	Crest value of a discharge current through the SPD with specified charge transfer Q and specified energy W/R in the specified time.
	— (IEC 61643-11
	Voltage Protection Level
U_p	Maximum voltage to be expected at the SPD terminals due to an impulse stress with defined voltage steepness and an impulse stress with a discharge current with given amplitude and waveshape.
	— (GB 18802.11、IEC 61643-11
	maximum r.m.s. voltage
Uc	Which may be continuously applied to the SPD's mode of protection.
	— (IEC 61643-11)
	follow current
l _f	Peak current supplied by the electrical power system and flowing through the SPD after a discharge current impulse.
	— (IEC 61643-11)
	class I tests
class I	Tests carried out with the impulse discharge current limp, with an 8/20 current impulse with a crest value equal to the crest value of limp, and with a 1.2/50 voltage impulse.
	— (IEC 61643-11
	class II tests
class II	Tests carried out with the nominal discharge current I_n , and the 1.2/50 μ s voltage impulse.
	— (IEC 61643-11)

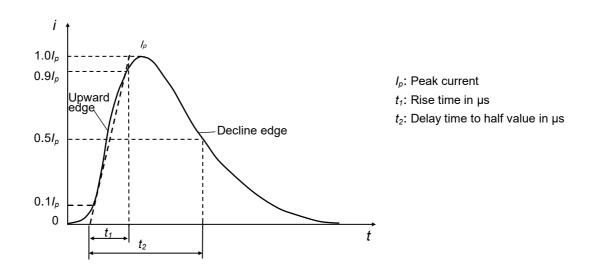
GDT

GDTGas Discharge Tube

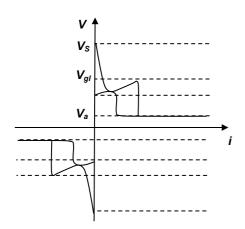
SPJ Series


Specifications

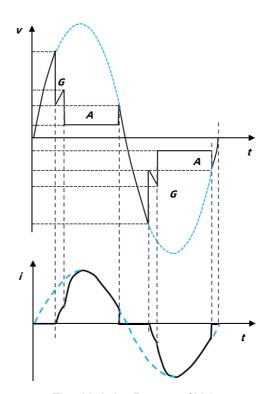
Model			SPJ351D - XX	SPJ601D - XX	SPJ801D - XX	SPJ102H - XX	SPJ152H - XX	
Category		II	1 & 11	1 & 11	1 & 11	II	Units	
Application			N - PE					
Nominal D.C. Spar	k-over Voltage	e (100 V/s)	350	600	800	1000	1500	V
D.C.Spark-over Vo	oltage (100 V/s	·)	280 ~ 420	480 ~ 720	640 ~ 960	800 ~ 1000	1200 ~ 1800	V
Impulse Spark-ove	r Voltage @1	kV/µs	< 900	< 1400	< 1600	< 2000	< 2800	V
GB/T18802.311								
Nominal Impulse D	ischarge Curr	ent @8/20 µs <i>I</i> _n	40	40	40	20	20	kA
Maximum Impulse Discharge Current @8/20 μ s I_{max}		60	60	60	40	40	kA	
Class II (Comply	with IEC6164	3-11)						
Max Continuous Operating Voltage Uc 50/60 Hz		110	255	255	275	320	Vrms	
Follow Current Cut-off Ability AC 50/60 Hz		100	100	100	100	100	Arms	
Nominal Discharge Current @8/20 µs <i>I</i> _n		20	20	20	20	20	kA	
Maximum Discharge Current @8/20 μs <i>I_{max}</i>		40	40	40	40	40	kA	
Insulation Resistance (100 VDC)		> 1000	> 1000	> 1000	> 1000	> 1000	ΜΩ	
Capacitance at 100 kHz		< 7.0	< 7.0	< 7.0	< 7.0	< 7.0	pF	
Agonov Approvala	UL1449	A l®	0	•	•	0	•	
Agency Approvals	TUV	TÜVRheinland	0	0	0	0	0	


Notes: Pin type can be customized.

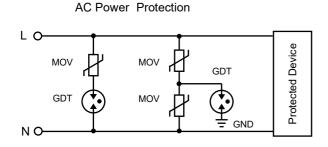
Reference Curve for Spark-over Voltage (Refer to 230 VDC)

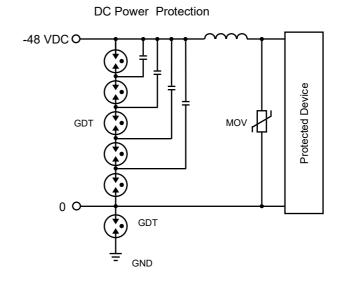

Reference Curve for Impulse Discharge Current

Gas Discharge Tube


Electrical Characteristics

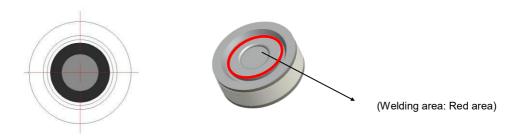
Relationship between Current and Voltage

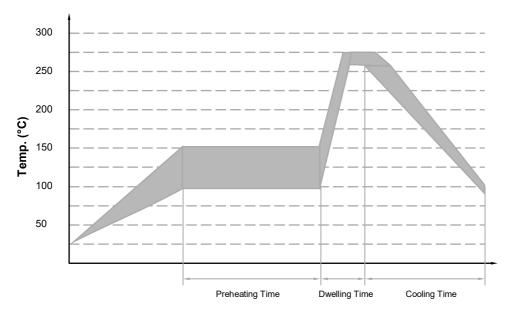

V_s: Spark-over Voltage Vgl: Glow Voltage Va: Arc Voltage G: Glow Mode


A : Arc Mode

Time Variation Patterns of Voltage and Current

Application Example

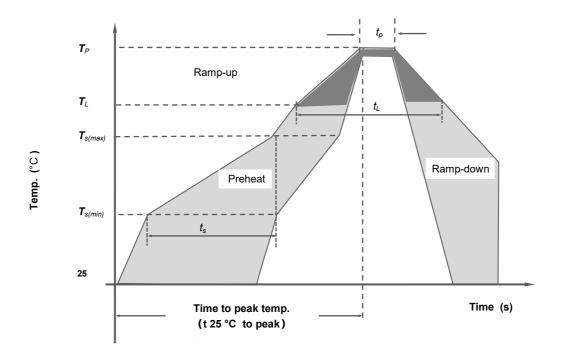



Recommended Hand-soldering Parameters

Items	Condition
Iron Temperature	350 °C (Max.)
Soldering Time	4 s (Max.)
Space between soldering point and the bottom of product	2 mm (Min.)

Welding Area: The shaded area shall be the welding area (no welding beyond the shaded area)

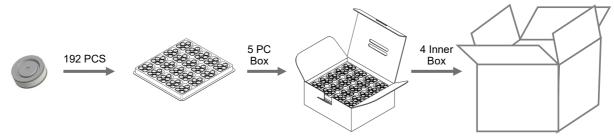
Wave Soldering Parameters (For Reference Only)



Item	Temp. (°C)	Time (s)
Preheating	90 to 150	< 150
Dwelling	255 to 280	3 to 10

Reflow Soldering Parameters (Reference)

	Reflow Condition	Pb-Free Assembly	
	Temp. Min $T_{s(min)}$	150 °C	
Preheat	Temp. Max $T_{s(max)}$	200 °C	
	Time (Min to Max) t _s	(60 to 180) s	
Average ramp ι	up rate (Liquidus Temp. (T_L) to peak)	3 °C / second max	
$T_{s (max)}$ to T_L Ra	mp-up Rate	5 °C / second max	
Reflow	Temp. (T_L) (Liquidus)	217 °C	
Reliow	Temp. (t_L)	(60 to 150) s	
Peak Temp. (T	P)	(255 to 260) °C	
Time within 5 °0	$\mathbb C$ of actual peak Temp. (t_P)	(10 to 30) s	
Ramp-down Ra	ate	6 °C / second max	
Time 25 °C to peak Temp. (T_P)		8 minutes max	
Do not exceed		260 °C	


Gas Discharge Tube

Packaging Information

PC Box Package

Item	PC Box	Inner Box	Carton
Dimensions (mm)	215 × 205 × 16	230 × 210 × 98	440 × 250 × 230
Quantity (PCS)	192	960	3840
Quantity (FCS)	192	900	3040

Notes: Packaging dimensions and quantity are for reference only.

Please refer to the specifications for the packaging details.

GDT

GDTGas Discharge Tube

Usage

- 1. Do not operate GDT in power supply networks, whose maximum operation voltage exceeds the minimum spark-overvoltage of the GDT.
- 2. The GDT may become hot in the event of longer periods of current stress (burn risk). In the event of overload the connectors may fail or the component may be destroyed.
- 3. If the contacts of GDT are defective, current load can cause sparks and loud noises.
- 4. When air pressure is from 55 kPa to 106 kPa. The relative altitude shall be +5000 m to -500 m.

Replacement

The GDT is a non-repairable product. For safety sake, please use equivalent GDT for replacement.

Storage

The packaged GDT should be placed in a dry, ventilation and non-corrosive environment.

Installation Position

Do not install the GDT in a touchable position.

Mechanical Stress

Do not take violent action such as knocking when assembling, to avoid product failure.